Calculus I Calculations on the TI-89

Written by Jeff O’Connell – joconnell@ohlone.edu
Ohlone College
http://www2.ohlone.edu/people2/joconnell/ti/

This instruction sheet contains the types of calculations used in most Calculus I courses. For instructions on how to do some of these computations with the graph of a function, refer to the sheet Calculations with Graphs on the web site above.

Numeric vs Algebraic: The TI-89 is the only calculator in the TI family that can do Mathematics algebraically, which is how you do Math. For example, saying that for \(f(x) = x^2 \), \(f'(x) = 2x \) is taking a derivative algebraically. Most calculators will only find derivatives numerically, that is, for \(f(x) = x^2 \) it can tell you that \(f'(2) = 4 \) but not \(f'(x) = 2x \). The TI-89 can do both.

The Calculus commands can all be found under the Calculus menu by pressing \(\text{F3} \).

Derivatives: To evaluate an algebraic derivative select 1:df from the Calc menu. The form of the entry is \(d(f(x), x) \). For a numerical derivative the form of the entry is \(d(f(x), x)|x=a \). Screen 1 shows finding \(f'(x) \) and \(f'(2) \) for \(f(x) = x^2 \). Higher order derivatives can be found by entering \(d(f(x), x, \text{order}) \). Screen 2 shows how finding \(f''(x) \) and \(f''(2) \) for \(f(x) = x^3 \). You can also evaluate a derivative at a list of points. For example, \(d(x^2, x) | x = \{0, 1, 2, 3\} \) will evaluate \(f'(0), f'(1), f'(2), \) and \(f'(3) \).

![Screen 1](image1)

Integrals: To evaluate an indefinite integral, select 2: \(\int f(x) \) from the Calc menu. The form of the entry to evaluate \(\int f(x) \, dx \) is \(\int f(x) \, dx \). To evaluate a definite integral, the form of the entry \(\int f(x), x, \text{lower limit, upper limit} \). For example, to evaluate \(\int_0^3 x^2 + 1 \, dx \) enter \(\int(x^2+1, x,0,3) \) and press \(\text{ENTER} \) to get 12. Please note, for definite integrals the calculator does NOT give you the +C, you must add that.

Limits: To evaluate \(\lim_{x \to a} f(x) \) select 3: \(\lim \) from the Calc menu. The form of the entry is \(\lim(f(x), x, a) \)

fMin, fMax: These will give you the x value of the minimum and maximum of a function. The form of entry for fMin is \(f\text{Min}(f(x), x) \), fMax is similar. The calculator will only find one value so check the graph to see if there is more than one minimum or maximum.

arcLen: Will evaluate the length of a function over a specified interval. The form of entry is \(\text{arcLen}(f(x), x, a, b) \) where a and b are the limits of the arc. For example to find the arc length of \(f(x) = x^2 + 1 \) between 0 and 3 enter \(\text{arcLen}(x^2+1, x,0,3) \) and press \(\text{ENTER} \) to get 9.747.

Tables: The Table will evaluate the y-coordinate of every function in the Y= editor. For example, enter \(f(x) = x^2 + 1 \) as \(y1 \) press \(\text{F3} \) for TBLSET. If Indpnt is set at ASK you will enter the x values by hand, if Indpnt is set at AUTO then the calculator will create a list of x values starting at the TblStart value and increasing by \(\Delta \) Tbl. Screen 1 shows how to enter the function \(f(x) = x^2 + 1 \) and its derivative. Screen 2 shows the values of \(f(x) \) and its derivative for the values starting at \(x = 0 \) and increasing 0.5 each time.

Notes

The function in any of these commands can be called from the Y= editor (where functions are entered for graphing). For example, if \(y1 = x^2 + 3x - 1 \) and you need \(f''(x) \) you can enter \(d(y1, x) \). To type lower case y (which is different than Y), press \(\text{2nd} [\text{ALPHA}] [Y] \).